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Ecologists often believe the discovery of mechanism to be the central goal of scientifi c research. While many macroecolo-
gists have inherited this view, to date they have been much more effi  cient at producing patterns than identifying their 
underlying processes. We discuss several possible attitudes for macroecologists to adopt in this context while also arguing 
that in fact macroecology already has many mechanisms that are ignored. We briefl y describe six of these: central limit 
theorem, fractals, random sampling and placement, neutral theory (and descendents), concordance of forces, and maxi-
mum entropy. We explore why these mechanisms are overlooked and discuss whether they should be. We conclude that 
macroecology needs to take a more pragmatic, less ideological approach to mechanism. We apply this viewpoint to the 
recent controversy over maximum entropy and suggest that maximum entropy needs to be viewed more pragmatically and 
less ideologically.

How vital is the identifi cation of mechanism to the scientifi c 
progress of ecology, and specifi cally, macroecology? While 
some iconoclasts (Peters 1991) suggest mechanism is not 
vital, many important fi gures in the fi eld (Schoener 1986, 
Tilman 1987, Rosenzweig 1991, Brown 1999b) suggest 
that mechanism documentation is central to the fi eld. Th is 
is made clear through the prevalent meme that ecological 
and macroecological investigation should proceed in two 
steps: 1) fi nd patterns and 2) fi nd the processes underlying 
the patterns (Rosenzweig 1991, Brown 1999b, Gaston and 
Blackburn 1999, Lawton 1999). Although anecdotal, our 
personal experiences with reviewers and questioners after 
seminars suggests an almost obsession with mechanism, with 
phrases like ‘all you’ve done is explain a pattern with another 
pattern’ or ‘it’s only science if you can explain it in terms of 
population processes’ being commonplace.

Th ere can be little argument that mechanism is useful 
and desirable in science. Some key benefi ts of understanding 
mechanism include:

1. Curiosity – knowing the ‘why’ of things is certainly 
rewarding and arguably a major motivation.

2. Extrapolation/generalizability – one is never sure how 
far one can extend a phenomenological pattern into 
new taxa, new scales or new conditions: patterns are 
useful for interpolation but not necessarily for extrapo-
lation (Peters 1991, Helmuth et al. 2005, Peterson et al. 
2007). Even strong proponents of a phenomenological 
approach (Peters 1991) acknowledge this limitation. 
Understanding mechanism can give insight into how 

far a prediction can be extended into new domains 
(Dunham and Beaupre 1998), something becoming 
increasingly important in this world of global change. 

3. Connecting disciplines – mechanism almost by its 
nature takes a reductionist approach and necessarily 
spans across levels of organization. Th us communities 
can be described by population processes, populations 
can be described by individual physiology and behav-
iour, which can in turn be described by cellular biology 
and the laws of physics and chemistry. Th is bridging of 
fi elds is not only intellectually satisfying, but it is pro-
ductive since new fi ndings at one level can be leveraged 
into novel predictions at another.

However, we macroecologists must also honestly and collec-
tively acknowledge that after a century and a half of prac-
tice (von Humboldt and Ross 1852, Darwin 1859) and two 
decades as a named fi eld (Brown and Maurer 1989) we have 
had little success at identifying mechanism. In a series of 
review articles several of the leading fi gures in macroecol-
ogy identifi ed this shortcoming (Brown 1999b, Gaston and 
Blackburn 1999). While some feel that the tide is turning 
(Smith et al. 2008) due to a few notable successes (West 
et al. 1997), on the whole our personal assessment is that 
macroecology is still more adept at producing patterns – and 
lists of potential mechanisms – than it is on practicing the 
strong inference that produces decisive tests which identify 
underlying mechanism. Species abundance distributions are 
a particularly egregious example (McGill et al. 2007) where 
probably a half a dozen or more mechanisms are proposed 
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per year, with no real consensus having yet been achieved on 
which are in fact important. In a recent editorial in the Inter-
national Biogeography Society newsletter, Carsten Rahbek 
says “macroecology appears to have hit a wall” and notes that 
“We … need conceptual advancements. Th e spatial ecologi-
cal literature is surprisingly poor in formulated hypotheses”. 
Th e most recent book on macroecology (Gaston and Blackburn 
2000) lists half a dozen to a dozen possible mechanisms for 
each major pattern described, but in almost no case are these 
authors able to decisively conclude which are actually in 
operation. In short it is easy to make the case, as suggested in 
the title of this paper, that mechanisms in macroecology are 
AWOL (a military acronym in most English speaking coun-
tries for Absent-WithOut-Leave, which has strong negative 
connotations).

It should fi rst be noted that macroecologists do not 
deserve scorn for this failing. Discovering mechanism in mac-
roecology is hard: by defi nition the scales involved are far too 
large to conduct the manipulative experiments (Brown and 
Maurer 1989) that are largely regarded as the best (and by 
some the only) route to identifying mechanism (McArdle 
1996, Dunham and Beaupre 1998, Resetarits Jr and Bernardo 
1998). Even though we all recognize that correlation cannot 
prove causation, macroecologists are left with no other 
option than to muddle along with observational data and 
correlation/regression.

If deducing mechanism is believed central to scientifi c 
endeavours, what can macroecologists do? Th ere are at least 
four possible strategies:

1. Wait longer – fi elds do not mature overnight, and fi nd-
ing mechanism can only occur after the patterns are 
fi rst found and then refi ned. Wiegert (1988) suggests 
there are three stages: What? (patterns), How? (details 
of patterns – how general are they, what are the pat-
terns in numerical parameters, etc) and only lastly 
Why? (i.e. mechanism). A good case can be made that 
macroecology is only in the 2nd (How?) stage and it is 
premature to expect mechanisms (3rd or Why?) stage 
(Gaston and Blackburn 1999).

2. Shape up and work smarter – others think the lack 
of mechanism is due to the powerful pull created by 
the ease with which patterns can be explored: a high 
school student can do it with nothing more than an 
internet connection and a spreadsheet program. Many 
feel that macroecologists are in general not using the 
available analytical tools as best they could, and that as 
a fi eld we must pay more attention to natural experi-
ments, microcosm (bottle) experiments, null models, 
statistical issues and procedures such as spatial and tax-
onomic autocorrelation (Blackburn and Gaston 1998, 
Gaston and Blackburn 1999, Blackburn 2004) and 
path analysis (Shipley 2003), while also incorporating 
longer time series (McGill et al. 2005, Agrawal et al. 
2007). As Robert MacArthur observed a long time ago 
“Astronomy was a respected science long before ecol-
ogy, and Copernicus and Galileo never moved a star” 
(Brown 1999a). Based on this train of thought, as we 
become cleverer, mechanism will follow.

3. Mechanism is not required – Peters, who was a macro-
ecologist before the fi eld had been so named, argued 

that the myopic quest for mechanism was useless and 
probably damaging (Peters 1991). Other scientifi c 
fi elds, such as physics, have advanced far without 
mechanism. For instance, Newton merely observed an 
inverse square law worked well in predicting gravita-
tional attraction, yet knew nothing about the underly-
ing cause. In the subsequent four hundred years since 
Newton we have not signifi cantly elucidated this, 
although Einstein pushed the problem back one level 
by equating gravity to curved space-time. Einstein him-
self was so disenchanted with the lack of mechanism 
in quantum mechanics that he famously uttered his 
plea for more mechanism, because “God does not play 
dice with the universe”. Yet, seven decades later these 
mechanisms have yet to be identifi ed, if in fact they 
exist at all. In some complex systems such as climatol-
ogy, where the mechanisms are well known (there are 
about seven physical laws that govern the atmosphere 
and oceans, and which can be easily incorporated 
into a computer model; Peixóto and Oort 1984) the 
resulting dynamics are so complex that disciplinary 
researchers are entirely comfortable pursuing correla-
tional patterns (Wallace and Gutzler 1981, Barnston 
and Livezey 1987).

4. Look again, macroecology already has mechanisms – A 
fi nal alternative is that macroecology has already 
found mechanisms, but that they are overlooked either 
because they are not like those we were expecting or 
because they are so unpalatable that we reject them. 
Th is is the “purloined letter” option of the title – a 
reference to a story by Edgar Allen Poe in which the 
villain successfully hid a critical letter by unexpectedly 
leaving it in plain site on the fi re place mantle, con-
trary to the expectations of the searchers.

A good case can be made for all four of the above arguments – 
likely all of them are true and relevant. Elsewhere one of us 
(McGill 2003a) has argued for some potential paths along 
the lines of no. 2 above and we fi nd ourselves in full agree-
ment with the suggestions of others (Blackburn and Gaston 
1998, Gaston and Blackburn 1999). We also feel that no. 3 
deserves more attention than commonly given, not because 
we think the extreme position stated by Peters (1991) is 
true but because the ecological obsession with mechanism is 
not characteristic of all other successful scientifi c fi elds. But 
in this paper we wish to explore in some detail the fourth 
argument, which has not often been made. Specifi cally, we 
suggest that macroecology has produced a number of mech-
anisms and practiced strong inference in decisively rejecting 
some of them, but they are not recognized due to their unex-
pected nature and failure to fi t into our preconceived notions 
of what ecological mechanisms should look like.

Within ecology broadly there has been a great deal of dis-
cussion and dispute about what are the appropriate sources 
of mechanisms. MacArthur (1968) and May (1976) found 
mechanism in population dynamic models that described 
species interactions and could be aggregated to explain com-
munity structure. Schoener (1986), however, dismisses such 
approaches as “phenomenological” and argued that the true 
mechanisms for community ecology are to be found at the 
individual level through behaviour and physiology. Still others 
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argue that mechanism needs to trace back even farther to the 
“fi rst principles of geometry, biology (e.g. natural selection), 
physics and chemistry” (West and Brown 2005). Finally, some 
adopt a pragmatic view that mechanism is simply those things 
that elucidate and advance science (Rosenzweig 1991).

In spite of this diversity of opinions it is clear that mac-
roecology, with a few exceptions (West et al. 1997), is not 
looking for mechanism in any of these areas. Perhaps this is 
not surprising – with the change of scales and reframing of 
questions implicit in macroecology the nature of mechanism 
will almost certainly change as well. Where, then, do mac-
roecologists seek mechanism? Brown clearly expected to fi nd 
them at least in part in the same niche and feeding processes 
studied in community ecology (Brown and Maurer 1989, 
Brown 1995). Later, Brown (1999b) and Lawton (1999) iter-
ated towards a broadly similar vision where mechanism was 
found through reductionism via physics and physiology mixed 
with the unique biological mechanism of evolution. Maurer 
(1999, 2005) however argued that an important consequence 
of macro-scales is that statistical-mechanics-like approaches 
may also be important, with individuals and species playing 
the role of a multitude of complexly diff erent particles which 
need to be averaged across. Th is view has been reiterated by 
the fact that macroecological patterns tend to have exact cor-
relates across multiple non-ecological systems, suggesting that 
their ultimate mechanisms may also reside outside of ecology 
(McGill 2003a, Nekola and Brown 2007). 

Th e remainder of this paper is divided into three sections. 
In the middle third of the paper we explore whether these 
are in fact mechanisms and what the implications of their 
success are for mechanistic search in macroecology. Specifi -
cally, we will argue for adopting a more pragmatic view that 
mechanisms are things that are useful in advancing our abili-
ties to understand and predict – no more and no less. Finally 
we will evaluate these six mechanisms against this standard. 
But fi rst, we review six diff erent general mechanisms (often 
adopted from physics and/or statistical mechanics) that may 
be important in a macroecological perspective to provide a 
common ground for the discussion.

Central limit theorem

Th e central limit theorem (CLT) states that a sum of a set 
of random variables will approach a normal distribution 
as the number of variables approaches infi nity. In practice, 
this pattern is achieved at far less than an infi nite number 
of variables, with normality often being approached in no 
more than four to fi ve. When random variables are multi-
plied together, causing their log transforms to be added, a 
normal distribution on a log-transformed scale (the lognor-
mal distribution) is generated (MacArthur 1960, May 1975, 
Limpert et al. 2001, McGill 2003a).

Th e simplest to prove (weak) version of the CLT requires 
that the random variables be independent and identically dis-
tributed (IID). Th is proof requires only a few lines combining 
the use of characteristic functions in probability with the Taylor 
series. However, probability theorists have spent much of the 
20th century progressively weakening these conditions. While 
the resultant proofs have become vastly more complicated, 
they demonstrate that sums of non-identically distributed and 

correlated random variables also converge to normality often 
only a little bit slower than in the IID case (Grimmett and 
Stirzaker 1992). Th e normal distribution also emerges as the 
output of MaxEnt when only the fi rst two moments (mean 
and variance) are known. More profoundly, MaxEnt can be 
used to prove both the weak and strong versions of the CLT 
with reference to sums of random variables (Johnson 2004). 

Th ere has been enormous debate on the applicability of 
the CLT to ecology. Although lognormality is most often dis-
cussed in terms of species abundances (SADs), many other 
macroecological distributions are at least close to lognormal in 
shape, including the distribution of body sizes across species 
(i.e. average body size per species), the distribution of body 
sizes across individuals (i.e. ignoring species), and the distribu-
tion of species range sizes (Brown 1995, Gaston and Blackburn 
2000). MacArthur (1960) and later more mathematically-
precisely May (1975) suggested that SAD lognormality is 
generated by the multiplication of species growth rates over 
time. Yet Pielou (1975) and later authors (Williamson and 
Gaston 2005, Alonso et al. 2008) state that this is an incor-
rect interpretation since the growth rates of diff erent species 
are not sampled from the same distribution. How can some 
of the top intellects in mathematical ecology fail to agree on 
such a basic mathematical point? Th e reality is that probability 
theory, more than any other fi eld of math, is at points only a 
thin veneer over philosophy and diff erences in interpretation 
over what counts as a ‘random variable’ or ‘instantiation of a 
distribution’ are subtle. In the end, this debate is moot in this 
particular case as both May (1975) and McGill (2003a) pro-
vide examples of how the CLT can lead to SAD lognormality 
without invoking assumptions regarding species growth rates.

One reason for the success of the lognormal is that it can 
accommodate a wide variety of shapes. Although always 
forming a perfectly symmetrical Gaussian on a log-scale, on 
an arithmetic scale the lognormal changes shape drastically 
depending on the coeffi  cient of variation (CV�σ/μ). When 
the CV is close to zero the lognormal is nearly normal. It is 
little appreciated that although human height is often thought 
a canonical example of the normal distribution, it is equally 
well fi t by the lognormal and it can be argued that height as 
an outcome of ontogenetic growth is better modelled as a 
product of random variables (Limpert et al. 2001). When the 
CV is large, the lognormal approaches the power distribution 
with an exponent of -1 (i.e. 1/x) (Montroll and Shlesinger 
1982). It is also increasingly well understood (Magurran and 
Henderson 2003, McGill 2003b, Green and Plotkin 2007) 
that sampling processes, especially in a biologically realistic 
context that allows for both spatial and temporal autocorrela-
tion, can distort the shape of a lognormal curve giving it skew 
along a logscale. As a result, it is hard to reject the lognormal 
as a possible descriptor of most species abundance datasets 
(data that remains with the mode at 1 even on a log scale 
being one of the few exceptions, Southwood 1996).

Fractal geometry and chaotic systems

While fractal dimension simply represents a descriptive statistic, 
it is important to remember that fractal and fractal-like patterns 
are readily generated via a wide array of non-linear dynamical 
(e.g. chaotic) systems (Mandelbrot 1982). As a result, system 
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fracticality can be used as a rubric to capture the impact of 
non-linear dynamics within complex systems. Classical fractal 
geometry assumes that the pattern of interest is self-similar or 
scale-free – that is to say that they look the same at any spatial or 
temporal scale (equivalent under any degree of magnifi cation). 
However, even Mandelbrot (1982) noted that such absolute 
self-similarity was not required for a system to operate in a frac-
tal fashion. In practical applications, an additional qualifi cation 
is added: that the patterns are stochastically self-similar. Th at is 
to say that they are not perfectly regular like Koch’s snowfl ake, 
but that there is random variation at all scales constrained such 
that any statistical treatments of measures of curvature, fractal 
dimension, general shape, etc are constant across scales.

Th e impact of fractal geometry on ecological process has 
been considered for decades (Halley et al. 2004). Some have 
explored the evolution of 1/f noise from the fractal prop-
erties of time series (Halley 1996). Others (Palmer 1988, 
Ritchie and Olff  1999, Haskell et al. 2002) have generated 
biodiversity models predicated on the fractal distribution of 
resources. Harte et al. have demonstrated how spatial fracti-
cality may give rise to the power law form of the species-area 
relationship (Harte 2008), and that a fractal distribution of 
individuals can lead to realistic species abundance distribu-
tions (Harte et al. 1999). Th ese theories have subsequently 
been extensively elaborated and tested (Green et al. 2003, 
Green and Ostling 2003). Kunin and colleagues (Kunin 
et al. 2000, Hartley et al. 2004) sought to use fractaility to 
extrapolate from easily measured smaller scales up to impor-
tant but hard to measure larger scales. Others have explored 
fractally branching trees (Mouillot et al. 2000).

However, the ecological world does not seem very frac-
tal: it is very strongly scale diff erentiated. Tests of fractal 
structure typically fi nd that fractal dimension rarely remains 
constant across more than 1–2 orders of observational 
magnitude (Palmer 1988, Kunin 1998, Kunin et al. 2000, 
Green et al. 2003, Hartley et al. 2004). Most recently authors 
have begun exploring multifractals which assume that the 
aggregate property of fractal dimension is not constant but 
changes in some predictable fashion across scales (Scheuring 
and Riedi 1994, Borda-de-Agua et al. 2002). However, theo-
retical use of multifractals requires an a priori specifi cation of 
the change of fractal dimension. As this relationship is more 
often empricially derived, multifractals border on losing 
their status as a general mechanism, and may perhaps be best 
thought of as representing sophisticated tool for measuring 
and describing data.

Random sampling and placement

Many authors have wondered how many patterns in macro-
ecology can be explained by random sampling from a larger 
regional pool of individuals or species. Th is idea goes back to the 
(at the time) radical theory of island biogeography (MacArthur 
and Wilson 1967) and the contentious debate over null models 
(Connor and Simberloff  1979, Gotelli and Graves 1996).

Increasingly, sampling theory is evolving in ecology from 
being the null model used to test the existence of pattern 
to becoming an outright explainer and predictor of that 
pattern. Arrhenius (1921) and later Coleman (1981) showed 
that power-law like species area relationships can be gener-

ated from simple random sampling of a species abundance 
distribution in combination with an assumption that num-
ber of individuals is proportionate to area. MacArthur and 
Wilson’s theory of island biogeography (MacArthur and 
Wilson 1967) made island biota essentially a random subset 
of the mainland. Colwell (Colwell and Hurtt 1994, Colwell 
and Lees 2000) attempted to explain the latitudinal richness 
gradient by placing species ranges down at random within a 
fi nite domain (the MDE or mid-domain eff ect).

In the end, many of these theories have been shown to 
be at best approximate. In particular, many authors (Condit 
et al. 2000, Conlisk et al. 2009) have shown that individuals 
within a species are clumped and not randomly (Poisson) 
distributed in space, with more accurate models being pro-
duced when this eff ect is taken into account (Leitner and 
Rosenzweig 1997, He and Gaston 2003). Similarly, several 
authors (Hawkins and Diniz-Filho 2002, Connolly et al. 
2003, Kerr et al. 2006) have shown that random placement 
alone is not enough to fully explain variations in diversity 
across landscapes. However, random placement of species 
with intra-specifi c clumping does a good job of parsimoni-
ously producing many key macroecological patterns (McGill 
and Collins 2003, Harte et al. 2005, 2008).

Neutrality, regional replacement and 
dispersal limitation

Th e unifi ed neutral theory of biogeography (Bell 2000, 
Hubbell 2001) claims to explain many patterns in macro-
ecology by assuming neutral population dynamics. Th ese 
authors touted neutrality as the key innovation. Here neu-
tral means that the per-capita demographic rates of a species 
are on average equal and do not depend in a species-specifi c 
fashion on the environmental background of other spe-
cies and the abiotic environment. Th e response was both 
intensely positive (Alonso et al. 2006) and negative (Clark 
2008). It has become increasingly clear, however, that several 
key aspects of sensu strictu neutralilty are easily and repeat-
edly empirically falsifi able, namely in terms of white noise 
demographic variability over many generations (Clark and 
McLachlan 2003, McGill et al. 2005), the relative unim-
portance of species-specifi c responses to the environment 
(Gilbert and Lechowicz 2004) and the unimportance of 
interactions with other species (Wootton 2005).  

Chave et al. (2002) showed that the same patterns could 
be produced under a variety of assumptions, both neutral 
and non-neutral. Although tempting to turn this into a 
black/white debate and conclude neutral theory is wrong, 
a more productive route is to try to identify what features of 
neutral theory overlap with those of Chave et al. and see if a 
more general, empirically supportable principle emerges. In 
particular neutral theory has three key ingredients: a) neu-
tral drift of populations in local communities, b) dispersal 
limitation (in the spatially explicit version), and c) a replen-
ishment of individuals (and hence species) in the local com-
munity from the regional community. All of Chave’s models 
include b and c but only half of the models include a, yet 
they all produce the same results.

Th is suggests that perhaps ingredients b and c might be 
the most relevant in explaining observed patterns. It would 
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be a mistake to simply equate dispersal limitation with neu-
tral theory, however. Th e fact that spatially explicit dispersal 
models produce diff erent (and more realistic results) than 
models that are well-mixed has been known for a long time 
(Janzen 1970, Levin 1974, Durett and Levin 1998). More-
over non-neutral dispersal limitation has eff ects similar to 
neutral dispersal limitation, suggesting that dispersal limita-
tion, and not neutrality, is key (Holyoak and Loreau 2006).
Th e more novel contribution has been the second factor 
which one might call the “regional replacement” or “spe-
cies pool theory” (Zobel 1997). Empirical comparisons to 
date all suggest that this factor may be the essential process 
underlying much macroecological pattern (Magurran and 
Henderson 2003, McGill 2003b, Dolman and Blackburn 
2004, also see Maurer and McGill 2004). Th is process 
requires the following features:

1. a local pool of individuals (i.e. a community) that is 
tracked;

2. an exogenous source of individuals and species identity 
(usually a regional pool of individuals but occasionally 
very high rates of local speciation);

3. periodic death followed by replacement of individuals 
from the local pool by the exogenous source;

4. an intermediate replacement rate of replacement – if 
the entire community turns over each iteration (replace-
ment rate of 100%) or if the local community is popu-
lated just once and then never replaced (replacement 
rate of 0%), then the local community is just a sample 
of the regional pool and echoes most of the properties 
of the regional pool (Green and Plotkin 2007).

Under these conditions, regional replacement controls the 
distributions of abundances within the local community 
and in particular of the rare species. In neutral theory all of 
the conditions of regional replacement are met along with 
the addition of neutral dynamics. In Chave et al’s work all 
of the regional replacement conditions are met with the 
addition of either neutral drift or niche-based population 
dynamics with or without density dependence. While these 
are suggestive of the pivotal role of the regional replacement,  
confi rmation comes from three independent studies which 
directly model just regional replacement and produce iden-
tical results (McGill 2003b, Dolman and Blackburn 2004, 
Zillio and Condit 2007). 

Th us of the three aspects of the unifi ed neutral theory of 
biogeography, neutrality appears dispensable while dispersal 
limitation and regional replacement appear critical. Ironi-
cally these same two features arguably were fi rst prominently 
featured in a model in the original theory of island biogeog-
raphy (MacArthur and Wilson 1967). Further work clearly 
needs to be done to explore the potential of dispersal limitation 
and regional replacement as a general mechanism. 

Concordance of causes

Another very general mechanism might be thought of as 
concordance of causes. Ecological systems are complex, and 
so, unlike Newtonian physics where it is often possible to 
reduce systems to a single factor (e.g. gravity for heavy, aero-

dynamic objects falling through the air), ecological patterns 
are invariably the outcome of multiple factors interacting 
with each other (Quinn and Dunham 1983). Under one 
view these multiple causal factors are all fi nely balanced, and 
slight changes in circumstances tip the balance towards one 
force or another, leading to extreme contingency (Simberloff  
2004). But it is equally possible to adopt the view of Man-
delbrot (1963) who suggested that a pattern will emerge 
when it is supported by many forces, while noise will be cre-
ated when the forces in play lead to contradictory patterns. 
Mandelbrot specifi cally was seeking an explanation for the 
ubiquity of power distributions and pointed out that it is 
the only distribution which survives the transformations of 
summation, mixing, and taking the maximum. For example, 
what if the oft-observed correlation between abundance and 
occupancy (Gaston et al. 2000) is not produced by a single 
mechanism? At least half-a-dozen mechanisms have been 
hypothesized (e.g. passive sampling, abundance and occu-
pancy both being positively correlated with niche breadth or 
position, abundance and occupancy both being a function of 
position within a geographic range, etc. Gaston et al. 2000). 
And it is possible that all of these act simultaneously and the 
pattern is robust and frequently observed because most likely 
mechanisms all lead to a positive correlation. Th is view is 
not too far from that found in Gaston and Blackburn’s review 
of macroecology (Gaston and Blackburn 2000) where they 
list multiple causes and assess the relative strength of each. 
An idea similar to concordance is also found in Darveau 
et al.’s alternative (2002) to the fractal branching network 
mechanism for allometric scaling (West et al. 1997).

Maximum entropy

Th e last few years have seen a spate of papers importing the 
statistical mechanics approach of maximum entropy to bio-
geography (Phillips et al. 2006, Phillips and Dudik 2008) 
and ecology (McGill 2006, Shipley et al. 2006, Pueyo et al. 
2007, Dewar and Porté 2008; see also Table 1). Although 
unappreciated, MacArthur (1955) also used MaxEnt in 
ecology 50 years ago.

Jaynes (1957) introduced MaxEnt as a logical extension of 
the framework of information theory (Shannon 2001, Cover 
et al. 2006) and demonstrated that it could produce most of 
the major results in statistical mechanics. Statistical mechanics 
is the study of systems with a multitude of particles that ignores 
the complex details of each particle (microstate) and instead 
makes statements either about macrostates (emergent proper-
ties) or their statistical distributions. A classic example is an ideal 
gas, where the position and velocity of each particle describe 
the microstate (6N measurements in a system with N particles 
due to x, y and z components of position and velocity). Statis-
tical mechanics instead makes statements about temperature 
(a macrostate or emergent property) and about the distribution 
of some microstate property of the particles (e.g. energy). Th e 
potential relevance to macroecology is obvious and has been 
promoted by Lotka (1925) and Maurer (1999, 2005). While 
statistical mechanics existed as a fi eld of physics investigation 
long before the development of MaxEnt (McQuarrie and Allan 
2000), in ecology the use of statistical mechanics approaches 
seems to be limited to the application of MaxEnt.



596

MaxEnt is a general purpose tool. Its goal is to describe 
the probability distribution, p(n) giving the probability that 
a particle is in microstate n (i.e. has property n). Th e process 
follows three steps:

1. take as input a set k�1..K of ‘constraints’ relating a 
microstate property, n, to an aggregate (i.e. macro-
state or emergent) property of the form 

ck�Σn fk(n)p(n). 

Here a weighted average across the microstates of 
some function, f of n, is aggregated up to the macro-
state level. A continuous formulation using integrals 
is equally possible. Th e constraint f0(n)�c0�1, giving 
Σn p(n)�1 (making a valid probability distribution) 
is always added. Probably the second most common 
constraint is fk(n)�n (giving ck� Σn p(n)�n-��n�) 
meaning that the average value of the ensemble is 
known. Two other common constraints in macro-
ecology are fk(n)�n2 (constraint on variance �n2�) 
and fk(n)�log(n), and hence a constraint on the geo-
metric average that is usually considered inappropri-
ate in physics (Montroll and Shlesinger 1982) but 
possibly with justifi cation in macroecology. 

2. Typically the set of possible states {n} (of size N) is 
much larger than the number of constraints K. In 
this case, p is not fully defi ned. Th us, some rule is 
needed to choose among the set of feasible p-distri-
butions – which has been reduced from the list of all 
possible distributions by the constraints but which can 
still be quite large – in a linear world it would have 
dimensionality of N-K. MaxEnt picks out a specifi c 
p by maximizing entropy, H�Σn p(n)log(p(n)) subject 
to the constraints specifi ed in step 1. It should be noted 
that while this entropy formula is the same as the Shan-
non diversity measure these two concepts should not be 
confl ated (i.e. MaxEnt � maximum diversity). Maximi-
zation of a function subject to constraints is a common 
problem in optimization solved by using Lagrange mul-
tipliers, λk and solving equations where 1st derivatives are 
set equal to zero (a generalization of the univariate, uncon-
strained approach to fi nding a maximum by setting the 
fi rst derivative to zero). Details can be found in any 
advanced calculus or optimization text as well as 
several recent ecology papers (Shipley et al. 2006, Pueyo 
et al. 2007, Haegeman and Loreau 2008).

3. K+2 equations result (setting equal to zero the fi rst 
derivatives with respect to n and each of the λk – 
including the sums–to–one constraint). Th is results in 
a general solution known as the Gibbs distribution: 
p(n)�exp[Σk λk fk(n)]/ Σn exp[Σk λk fk(n)]. Th e Gibbs 
distribution includes the normal, lognormal, exponen-
tial and logseries distributions as special cases. To cal-
culate pn one need only know the  λk that come from 
solving the derivatives of the constraint equations set 
equal to zero. Th e Gibbs distribution is also found as 
the shape of the curve used in multivariate logistic 
regression, providing a nice tie to a common statistical 
method (He 2010)

As such, MaxEnt can be seen as a balance between deter-
ministic factors (the constraints) and stochastic factors 
(the entropy maximization). MaxEnt can also be seen as 
a heuristic for indentifying the minimum necessary set of 
constraints (forces). Th ree minor variations on this process 
are possible and may be a source of confusion. 

First, MaxEnt can be applied in either a theoretical or 
an empirical context. In the theoretical context, the ck are 
parameters and the goal is to produce a functional form, 
p(n), (e.g. the logseries) parameterized  by the ck (i.e. the λk 
are functions of the ck) giving the probability that a species 
has n individuals (Alexeyev and Levich 1997, Levich 2000, 
Pueyo et al. 2007, Dewar and Porté 2008, Harte et al. 2008). 
In the empirical case, the ck are observed values, the λk can 
be solved to actual numbers,  and it is assumed that the dis-
tribution is the multinomial distribution and so the goal is 
calculate the pi, giving, for example, the probability that an 
individual is of species i, or in short the relative abundance 
of each species (Alexeyev and Levich 1997, Levich 2000, 
Shipley et al. 2006). 

Secondly, instead of simply maximizing entropy one may 
switch to a Bayesian framework and incorporate a prior dis-
tribution (Pueyo et al. 2007). Th en one maximizes relative 
entropy (the increase in entropy for the fi nal p versus the 
Bayesian prior) known as MaxREnt. In this framework of 
relative entropy, the maximization of absolute entropy is 
equivalent to assuming a uniform distribution as a prior. Of 
course, as in any Bayesian context, this opens a question of 
what the appropriate prior is. Jaynes argued for a least infor-
mation prior (Jaynes 1968, Pueyo et al. 2007) but Jeff rey’s 
Priors or informative priors based on actual prior information 
or expert opinion could also be incorporated. Pueyo et al. 

Table 1. Which generic mechanisms explain which macroecological patterns? An “X” indicates that mechanism can be used to explain that 
pattern. Some patterns (e.g. last row) appear to have not been explained by any general mechanisms.

  MaxEnt CLT Random sample Fractals
Regional replacement and 

dispersal limitation

Hollow curve SAD on an arithmetic scale X X X X
Lognormal range size X
Lognormal body size X X
Species area relationship X X X X
Damuth’s rule X
Nestedness X X
Abundance/occupancy/range size correlations X
Relationship of diversity to latitude X
Correlation of productivity and diversity
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(2007) argue that a lack of prior is appropriate for eff orts 
to predict the relative abundance of specifi c species (i.e. the 
empirical case in the previous paragraph such as Shipley et al. 
2006), but that attempts to predict the shape of an SAD
(i.e. theoretical applications) should use a least information 
prior. However, Harte et al. (2008) uses no prior for their 
theoretical application. Th ere is of course no one right 
answer – it is a decision that must be made based on reason-
ability and results. 

Finally, there are three diff erent justifi cations given for 
why one would maximize entropy.

a)  Th e second law of thermodynamics states that 
entropy will increase over time. Th e bringing into 
ecology of this justifi cation requires great caution 
as it becomes reasoning by analogy. Simply because 
the universe maximizes the disorder (entropy) of 
atomic particles over time does not mean that Mother 
Nature will maximize the disorder of, for example, 
species in a community. Indeed, one defi nition of 
life is ‘those systems that locally reverse entropy 
maximization’. 

b)  Maximum probability – it can be shown fairly sim-
ply using Stirling’s approximation that maximizing 
entropy simultaneously chooses the macrostate that 
has the highest probability (i.e. has the most possible 
microstates leading to that macrostate; Pueyo et al. 
2007, Haegeman and Loreau 2008). Th is was the orig-
inal interpretation of entropy in statistical mechanics, 
and clearly could be applicable to ecology as a general 
probabilistic rule.

c)  Minimum information – Jaynes (1957) interpretation 
of MaxEnt was derived from information theory 
(Shannon 2001, Cover et al. 2006). Increasing entropy 
means decreasing information. Th us, as Shipley (2009) 
notes, an information theoretic interpretation is a 
rule of logic – take the probability distribution that 
increases the information in p the least amount pos-
sible while being consistent with the constraints – in 
short only add information found in the constraints. 
Any other rule for selecting p such as taking the 
center of feasible solution or minimizing entropy 
or Simpson’s concentration (Haegeman and Loreau 
2008), while possibly having logic of their own 
outside of the information framework, are adding 
information in the technical sense on top of that 
provided by the constraints.

Very often those using justifi cation c follow Jaynes and use 
priors and hence MaxREnt, while those using justifi cations 
a and b tend to use no prior (equivalently the equiprobable 
prior) and hence to use MaxEnt.

Given this general machinery for reproducing a 
distribution of microstates given only a few constraints (or 
known values) on macrostates, what can MaxEnt bring 
to ecology? Most obviously, it could reproduce previ-
ously known patterns relating to probability distributions, 
which it does with considerable success (Table 2). To 
date ecological MaxEnt practitioners have focused most 
heavily on the species abundance distribution (McGill et al. 
2007). 

Why do we ignore and reject these 
mechanisms?

We have provided a summary of six diff erent mechanisms 
that seem to exist and are being successfully applied in mac-
roecology today but are often overlooked or not recognized 
as mechanistic. It is interesting (and indicative of the issues 
this paper seeks to examine) just how strongly negatively 
some authors react to some of the mechanisms listed above. 
Examples include strongly negative reactions to lognormality 
(Williamson and Gaston 2005), neutrality (Clark 2008) and 
random sampling/placement (Diamond and Gilpin 1982). 
We think there are two main reasons the above mechanisms 
keep being rejected or ignored: they are ‘too’ random and 
they ‘have nothing to do with ecology’.

With regards to the fi rst critique, we ask why random pro-
cesses that produce pattern should not be considered a type 
of mechanism? It is interesting to note that stochastic think-
ing has been taking an increasingly prominent role in ecol-
ogy, fi rst as noise on a deterministic skeleton (Ludwig 1975, 
Cushing et al. 1998), and now increasingly as the source of 
pattern itself (perhaps beginning with MacArthur and Wilson 
1967, and reaching a peak with Hubbell 2001). But this has 
been resisted every step of the way (Clark 2008). We think 
this bias against stochastic models may be partly driven by 
adopting the sense of mechanism used by our cousins in biol-
ogy, molecular and cell biologists, where mechanism is quite 
explicit, concrete and deterministic – this protein bumps into 
that protein causing a conformation change and exposing 
an enzymatic site. But physics has seen a progression from 
deterministic laws such as those of Newton and Maxwell 
to stochastic techniques and laws such as those of quantum 
mechanics and statistical mechanics. Now as molecular and 
cellular biologists have begun scaling up into systems biology, 
stochastic models are of increasing importance. Why should 
ecology be any diff erent? Perhaps the increasing incorpora-
tion of stochasticity is a sign of disciplinary maturity. We thus 
see stochastic models as being just another class of models 
that should be judged on their ability to elucidate our under-
standing of the world and to make novel predictions.

Although it is verbalized less often, we think considerable 
resistance is also based on the “it has nothing to do with ecol-
ogy” argument. Ecology is relatively unique as a fi eld because 
many scientists choose their discipline not because they are 
enamoured with the process of science but because they are 
enthralled with the organisms they study and the landscapes 
those organisms live in. Few physicists felt a loss at reducing 
atoms to randomly colliding abstractions to develop statisti-
cal mechanics, but many ecologists feel a loss at reducing 
organisms to grist for an abstract, general principle like the 
central limit theorem or maximum entropy. But therein lies 
an irreconcilable problem: many of the patterns ecologists 
like to hold up as their own, such as the species abundance 
distribution, species area relationship or distance decay of 
similarity are in fact frequently repeated across entirely non-
ecological systems such as geology, meteorology, econom-
ics, computer science, sociology, and the arts (Gaston et al. 
1993, Limpert et al. 2001, McGill 2003a, Mitzenmacher 
2004, Nekola and Brown 2007). Are we willing to throw 
these essential ecological descriptors away as not being truly 
‘ecological’? Or, should we be willing to accept mechanisms 
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that are general enough to be common between all these 
fi elds?

Moving forward with mechanism in 
macroecology?

How should macroecology ecology address the issue of mech-
anism? We earlier identifi ed four paths. As already noted, we 
believe all of these are viable and should be pursued. But 

more generally we think we need to change our mindset 
about mechanisms. Mechanism has often been used in a 
very dogmatic and even sanctimonious way: “my work is 
better than yours because it is more mechanistic”, leading 
to ideological squabbles over what constitutes mechanism. 
Instead, we suggest a return to the view of Rosenzweig (1991) 
who espoused a more pragmatic view. Even MacArthur 
(in choosing entropy over alternatives as the property to 
be maximized in his analysis of how diversity aff ects stabil-
ity) argued “It should be pointed out that choice among 

Table 2. A summary of applications of MaxEnt (or MaxRelEnt) to ecology. 

Reference Prior*
Empirical (E) or 
theoretical (T) Constraints Results

Montroll and Shlesinger 
1982, Pueyo et al. 2007

equiprobable T �n� • exponential distribution

Montroll and Shlesinger 
1982, Pueyo et al. 2007

equiprobable T �n�, �n2� • normal distribution

MacArthur 1955 equiprobable T none •  criteria which lead to greater routes of 
energy fl ow through a food web

MacArthur 1960 equiprobable T �n� • broken stick (i.e. exponential) SAD
Alexeyev and 
Levich 1997, 
Levich 2000

equiprobable E, T resource consumption �
available

•  SAD curve, abundances of individual 
species

Shipley et al. 2006 equiprobable E abundance-weighted trait 
means

•  Specifi c predictions of abundances of 
specifi c species

Pueyo et al. 2007 n–1 T �n� • logseries SAD cn–1exp(-κn)
Pueyo et al. 2007 n–1 T �n�, �log n� • generalized logseries: cn–βexp(-κn)
Pueyo et al. 2007 n–1 T �n�, �log n�,

�log2 n�
• lognormal SAD

Harte 2008 equiprobable T �n�=N0/S0, 
�e�=E0/S0
(i.e. constraints on 
average abundance 
and energy across 
species)

•  logseries SAD distribution of resource 
use Damuth’s law

Harte 2008 equiprobable T �n�=n0A/A0
(i.e. constraints on 
average abundance 
across cells)

•  distribution of local occupancies, 
species area curve (requires con-
straints/results of previous line also)

Dewar and Porté 2008 Π 1/(n+1) T �n�=N
�nr�=R
(i.e. constraints on 
average abundance 
and total resource use 
across species subject 
to a special form of 
resource use 
distribution)

•  particular SAD (complex, but similar 
in shape to lognormal)

•  relationship between abundance and 
resource use

Banavar and 
Maritan 2007

Π 1/(n+c) T �n� • generalized logseries c(n+λ)–1exp(-κn)

Phillips et al. 2006, 
Phillips and Dudik 2008

equiprobable E �f(ei)�=Ei
(i.e. the average value 
of some function such 
as linear, quadratic or 
threshold of some 
environmental variable 
such as average 
precipitation matches 
the same average at 
sites where the 
species was observed

•  species ranges (roughly the probabil-
ity that a species is found at each site)

He (2010) equiprobable T general •  If richness goes up towards tropics 
while no. of constraints is constant, 
evenness must go up in the tropics

•  the lagrange mutlipliers and maxent 
distribution are analogous to logistic 
regression

*an equiprobable prior is essentially equivalent to no prior and hence to MaxEnt while any other prior implies MaxREnt.
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various functions to defi ne stability precisely rests only upon 
usefulness of the defi nition” (MacArthur 1960).

In short, mechanism is good when it is useful – no more 
no less. Specifi cally, mechanism is good when it improves our 
understanding or our predictive abilities (likely by enhancing 
our confi dence in extrapolative predictions). Mechanisms are 
only likely able to improve understanding and prediction when 
they can be tested and falsifi ed. And just because predictable 
patterns exist that cannot be mechanistically explained (like 
the law of gravity) does not make them unworthy of scientifi c 
consideration. While mechanisms from any source are good if 
they’re useful, mechanisms developed from some ideologically 
pure source or direction may have little applicability to the 
real world. Box 1 summarizes eight viewpoints that we need to 
adopt in a pragmatic view of mechanism in macroecology.

How do the above six general mechanisms fi t the prag-
matic criterion? Th e jury is still out and there is more work 
to do, but it seems entirely possible that a pragmatic view 
will embrace at least some of these. It is fi rst important to 

note that all six of these mechanisms are testable. Th ey have 
been measured against empirical data and in many cases 
found to fi t quite well and in a few cases (most often fractals 
and random placement) found to fi t poorly. Secondly, by 
the very nature of their generality, these mechanisms have 
the benefi t of parsimony. Especially general mechanisms 
like MaxEnt or regional replacement/dispersal limitation 
have been shown to lead to unifi ed theories tying together 
many patterns in a single framework. Probably the biggest 
test of these mechanisms is whether they are useful. Despite 
wishes that it not be true, all of these mechanisms explain 
how the universe works: why should constraints imposed by 
mathematical logic be excluded from consideration as valid 
explanations for pattern? And, many of these quite success-
fully make novel predictions or focus research. Th e regional 
replacement suggested the ecologically relevant distinc-
tion of transient versus permanent members of communi-
ties which has been empirically borne out (Magurran and 
Henderson 2003, Ulrich and Ollik 2004). Shipley and col-
league’s (2006) work is predictive down to the abundance 
of individual species, something rarely achieved in ecology. 
Harte’s MaxEnt work (Harte et al. 2008) has pointed out 
that many patterns are driven by just a few key state variables 
(S, N, E for a given area A) and highlighted the importance 
of further work on understanding the drivers of those few 
factors. Fractals and modifi ed random placement have been 
used to make extrapolative predictions to larger, harder to 
sample spatial scales (Kunin 1998, Kunin et al. 2000, He 
and Gaston 2003) or to move from presence/absence to 
abundance (He and Gaston 2000, Conlisk et al. 2009). In 
short, a pragmatic view of mechanism would embrace these 
general mechanisms (although not in exclusion to other, 
more explicitly biological mechanisms). Box 2 lists several 
important future research directions in general mechanisms.

A pragmatic view of mechanism applied 
to MaxEnt

We wish to briefl y return to the topic of this overall forum 
and apply the above pragmatic view of mechanism to some 
of the controversies surrounding the recent uses of MaxEnt 
in ecology (Shipley et al. 2006, Pueyo et al. 2007, Harte 
et al. 2008). To date only the Shipley et al. paper (hereafter 
SVG2006) has been published long enough to evoke a pub-
lished response, but SVG2006 has already received much 
commentary (Marks and Muller-Landau 2007, Roxburgh 
and Mokany 2007, Haegeman and Loreau 2008, Shipley 
2009), suggesting the use of MaxEnt will be as controver-
sial as the other general mechanisms examined above. Spe-
cifi cally we think a pragmatic view would note the following 
things about the MaxEnt controversy to date:

1. MaxEnt has made some very strong, useful predictions. 
SVG2006 predicted the relative abundance of individual 
species. Th is has been a surprisingly and disappoint-
ingly hard task with many attempts but few consistent 
patterns (Murray et al. 2002). Similarly Harte and 
colleagues (Harte et al. 2008) work has to stand as one 
of the most spectacularly parsimonious and unifi ed 
theories seen in community ecology to date. From a 

Box 1 – Dos and don’ts of a pragmatic view of mechanism

1. Do expect mechanisms to be useful by: 1) increasing our 
understanding how the world works, 2) improving our 
ability to make predictions, especially to extrapolate into 
new circumstances

2. Do continue to practice strong inference. Test and reject 
proposed mechanisms. Ironically some of the seemingly 
general mechanisms listed above have been subject to 
Plattian strong inference (Platt 1964, McGill 2003a) and 
been tested and found wanting (e.g. fractals, random sam-
pling and placement), which suggests we have made 
progress on mechanism in macroecology

3. Do seek to use more sophisticated approaches to fi nd 
mechanism including natural experiments, microcosms, 
long time series (e.g. paleontological data), path analysis, 
and rigorous null hypotheses.

4. Don’t assume mechanism is everything or dismiss things 
that are “only patterns”, unless we choose as scientists to 
also ignore the law of gravity.

5. Don’t claim or expect that there is only one valid domain 
of science to produce mechanisms. If a mechanism is use-
ful it is good, regardless of its origin.

6. Don’t create a false dichotomy between ecological and 
non-ecological mechanisms. For example the central limit 
theorem may operate when just four or fi ve forces are in 
play. The CLT can usefully give a mathematical form while 
not preventing more detailed exploration into the four or 
fi ve forces operating. The same with the concordance 
mechanism.

7. Don’t expect patterns that are more general than ecology 
to have mechanisms that are specifi c to ecology (e.g. log-
normal distributions). On the other hand do expect pat-
terns that are unique to ecology (e.g. more species in the 
tropics) to be driven by mechanisms specifi c to ecology. 
Overall, probability distributions or patterns that relate S, 
N and A seem to fi t general mechanisms well. Patterns that 
are correlations, especially with organism traits or envi-
ronmental variables, and dynamics over time series have 
not been well explained by general mechanisms.

8. Don’t exaggerate the success or importance of a reduc-
tionist, mechanistic approach in other fi elds of science 
(e.g. physics is surprisingly non-mechanistic yet very 
successful).

9. A pragmatic view of mechanism takes into account the 
diffi culty of measuring the relevant data and parameters. 
Notably many of these general mechanisms have param-
eters that are easily measured.
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pragmatic point of view MaxEnt would appear to be 
very strong in the prediction front.

2. MaxEnt is moderately circular but so are most other 
models. A major criticism of SVG2006 has been that 
it is circular – the abundances predicted are derived 
from abundance weighted trait means. But it should 
be noted that MaxEnt is not alone in being inher-
ently circular (the ck are used to predict properties 
of the system in which they are measured): so are 
most models. Although desirable, it is very rare to 
fi nd a model that is parameterized independent of 
the data it is fi tting. Even linear regression fi ts the 
line using the data, something that is statistically 
well accounted for by the idea of degrees of free-
dom. Th is is a key issue in MaxEnt: are the degrees 
of freedom large? Haegaman and Loreau (2008) 
point out that the degrees of freedom in physics are 
typically very large (many particles, few constraints) 
while it is noticeably smaller in SVG2006 (namely 
nine constraints and 30 variables predicted). Simi-
larly, Roxburgh and Mokany (2007) show that the 

accuracy of prediction in SVG2006 goes down with 
increasing degrees of freedom. But this is all to be 
expected. Ecology has fewer degrees of freedom than 
physics (less organisms than molecules versus more 
forces leading to more constraints). And the link 
between degrees of freedom and goodness of fi t is 
expected. A pragmatic view will assess MaxEnt on 
whether the degrees of freedom are large enough, 
especially in relation to other accomplishments in 
ecology.

3. Quality of prediction is moderate. Marks and 
Muller-Landau (2007) and Haegeman and Loreau 
(2008) both suggest that the predictive accuracy of 
SVG2006 is less than the r2�0.96 originally claimed 
when methods such as logarithmic or square root 
transforms of abundance, cross validation, and 
RMSE instead of r2 are used. Th is is true, but they 
still fi nd r2 of 0.30 and up. Th is should be compared 
to other attempts to predict abundance in communi-
ties where the best r2’s are quite often in the 0.10–
0.20 range (Murray et al. 2002, Russo et al. 2003, 
McGill 2008). A pragmatic view seeks good predic-
tion in comparison to other ecological methods for 
the question.

4. MaxEnt is not the best possible predictor – Several 
authors show that center of feasible set methods 
(e.g. Haegeman and Loreau 2008) are better predictors 
than MaxEnt. Th is is interesting and possibly impor-
tant. A pragmatic view would embrace these predic-
tors as better if they prove equally general and easy 
to apply, although an eye to parsimony might still 
prefer MaxEnt as containing no hidden assumptions 
(Shipley 2009). In any case, in a pragmatic view, 
it is not an invalidation of the basic question and 
approach, just a refi nement in optimization methods.

5. MaxEnt is unfortunately highly tuneable and sensitive to 
the exact set of constraints – probably the greatest cau-
tion with regard to the application of MaxEnt is that it 
is highly tuneable. If one knows the outcome desired, 
one can choose constraints to produce that outcome 
(Montroll and Shlesinger 1982). And the outcome is 
highly sensitive to perturbation – adding a constraint 
often drastically changes the result. For example, 
adding a variance constraint to the mean constraint 
changes the monotonic exponential distribution to 
the unimodal normal distribution (Table 2), but 
in ecology who is to say which of these constraints 
belongs or does not? For example in Harte et al.’s 
work (2008), removing the energy constraint or add-
ing a stoichiometric constraint on nitrogen or add-
ing variance constraints or adding a prior would all 
signifi cantly change the resulting predictions. Some 
of the advantages and interpretations of this fact are 
highlighted in Pueyo et al. (2007). Th e empirical 
approach such as found in SVG2006 is less subject 
to this issue due to the lack of decision about what 
constraints to use. But this remains an area requiring 
careful scrutiny to be sure that strong, novel, general 
predictions are produced other than just the already 
known patterns, or else MaxEnt will be just a fancy 
form of curve fi tting (McGill 2003a).

Box 2 – important research directions on general mechanisms

1. Can general mechanisms produce novel predictions? 
General mechanisms by their very nature, while possibly 
the correct explanation of why things work they way they 
do, are not often not exciting. Simply producing a logseries 
or lognormal species abundance distribution is not particu-
larly novel. General mechanisms will succeed or fail based 
on their novel predictions. The results in producing novel 
predictions from general mechanisms are mixed to date.

2. Can we use general mechanisms as pointers towards inter-
esting questions and away from uninteresting ones? For 
example, many general mechanism theories (Bell 2000, 
Hubbell 2001, McGill and Collins 2003, Harte et al. 2008) 
take species richness (or speciation rate in the case of neu-
tral theory) as a critical, consequential input parameter but 
rarely are able to make predictions about these parameters, 
suggesting this is an interesting line of research. But many 
general mechanisms produce lognormal-like or logseries-
like species abundance distributions, while this pattern is 
found throughout a wide array of non-ecological fi elds. 
This suggests that further investigations into this question 
will not produce exciting new conclusions.

3. Can we extend general mechanisms to predict correla-
tions and behaviour over time? General mechanisms to 
date have not typically predicted many correlations such 
as body size/abundance or productivity/diversity (but see 
e.g. McGill and Collins 2003, Harte et al. 2008). Simi-
larly, general mechanisms have not done a good job in 
making predictions about trends, variances or other prop-
erties of variables over time. Can general mechanisms 
make predictions here, or are these directions that will 
require more ecological mechanisms?

4. Can we build more unifi ed theories with general mecha-
nisms? Some of the most successful attempts at unifi ed 
theories in macroecology have derived from generalized 
mechanisms (Hanski and Gyllenberg 1997, Bell 2000, 
Hubbell 2001, McGill and Collins 2003, Harte et al. 
2008). Is this a strength of generalized mechanisms which 
we can push further?

5. Can we merge the separate general mechanisms into even 
more general mechanisms? There seems to be some over-
lap between some of the mechanisms (e.g. MaxEnt and 
CLT or MaxEnt and random placement or random place-
ment and neutral theory). Can we move to even more gen-
eral mechanisms?
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Summary

Macroecology has struggled to fi nd mechanisms to match 
its success at fi nding patterns. Broadly, the fi eld of ecology 
has perceived this as a major failure. We argue, however, 
that there are already a lot of mechanisms that often get 
overlooked due to their general nature. We thus recommend 
a more pragmatic view of mechanism: the goal of science 
is to explain and predict and anything that furthers that 
is good regardless of whether it is a pattern or a process or 
what level of biological organization it comes from. In this 
view, the overlooked mechanisms are viable and deserving of 
more attention. And in particular, MaxEnt shows promise 
while still needing to prove itself, but the measuring stick 
should be pragmatic and measured in shades of gray and not 
absolute and ideological.
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